
CSCI 2320
Principles of Programming

Languages

Functions and Memory Management
Reading: Ch 9 & Ch 11

(Tucker & Noonan)

C makes it easy to shoot yourself in the foot;
C++ makes it harder, but when you do it blows
your whole leg off.

-- B. Stroustrup

Memory
architecture for PL

The Structure of
Run-Time Memory

Run-time stack
Ch 9

Implementation of functions

• Parameter passing: by value vs. by reference
• Only pass-by-value: C, Java, Python
• Both pass-by-value and reference: C++
• Example of pass-by-reference

 void change(int &x) { x = 10; }
 void main() {
 int a = 0; change(a);
 }

• Misconception: mixing up pointers with pass-by-
reference (see code on Canvas)

Implementation of functions

How functions (are made to) work
• Activation record (AR) or stack frame
• Push-pop operations in run-time stack

Activation record (AR)

Activation record
A block of information associated with each function
call

• Static link - to the function’s static parent (only in a
nested function)

• Dynamic link - to the activation record of the caller
• parameters and local variables
• Return address – jump to the memory location of the

next instruction (in caller) after this function finishes
• Saved registers
• Temporary variables – values of expressions like x + 1
• Return value – like a local var, but copied to a well-

known, shared space accessible to the caller

Run-time stack
A stack of activation records
• Each new call pushes an activation record, and

each completing call pops the topmost one
• So, the topmost record is the most recent call
• The stack has all active calls at any run-time

moment

Is one AR per function enough?
• No. Recursive functions.
• A function can call itself directly or indirectly.

int factorial (int n) {
 if (n < 2)
 return 1;
 else return n*factorial(n-1);
}

Stack activity for
factorial(3)

First call Second call Third call
returns 1

Second call
returns 2*1=2

First call
returns 3*2=6

Simplified: return values not shown

int factorial (int n) {
 if (n < 2)
 return 1;
 else
 return n*factorial(n-1);}

n 3 n 3 n 3 n 3 n 3

n 2 n 2n 2

n 1

G
ro

w
th

 o
f s

ta
ck

Heap
Ch 11

Allocating heap blocks

• new allocates a block of heap space
E.g., new(5) returns the address of the next block of 5

words available in the heap:

• How are arrays allocated?

Dynamic arrays (Java)

Does C allocate arrays in this fashion? (int x[10];)
Where do C’s arrays (local var) live?

int [] A = new int(10);

JVM spec does not mandate contiguous allocation,
but usually arrays are allocated contiguously

Garbage collection
What is garbage?
How does it arise?
How to reclaim unused space?

Garbage

Block of heap memory that cannot be
accessed by the program

How does it happen?

When
• an orphan is created
• a widow is created

Garbage example

class node {
 int value;
 node next;
}
node p, q;

p = new node();
q = new node();
q= p; //creates orphan: (b)
delete p; //creates widow: (c)

Garbage collection

A strategy that reclaims unused
heap blocks for later use by the
program.

Origin:
John McCarthy (1960) for LISP

Algorithm 1:
Reference Counting

Example 1

What’s the effect of p.next = null?

1

r 1

Algorithm description
• Activation: new, delete, assigning one

pointer (or object) to another
• Data structure
• free_list: linked list of free blocks
• Each block has an RC

Algorithm description
Algorithm:
• Event 1: creation of a new incoming edge
• Increase the RC of the block by 1

• Event 2: Deletion of an incoming edge
(a) Decrease the RC of the block by 1
(b) If the RC hits 0, add the block to the free_list and
decrease the RC of its direct descendent by 1.
Recursively apply (b) if the descendent RC becomes 0.

Corrections to textbook

• Reference counting is activated for new, delete,
and any assignment of one pointer to another.
• Upon deletion of an incoming arrow, if the RC

hits 0, only the direct descendent's RC is
decremented by 1, not necessarily all
descendents’ (or the chain of descendents’) RC.

Example 2

p.next = null

r

r

1

1

Pros and cons

• Pros
• Dynamic (triggered by certain operations)

• Cons
• Cannot detect circularly referencing orphans
• Storage overhead of storing the RCs

Algorithm 2:
Mark and Sweep

Pass I (Mark)
• Triggered by t=new node() when free_list = null
• All mark bits (MB) previously initialized to 0
• Set MB of reachable blocks = 1

Pass II (Sweep)
• Reconstruct the free_list (by sweeping MB = 0 blocks)

• Then set MB = 0 everywhere
• Now process t=new node()

Algorithm description
• Activation: only when heap overflow occurs
• Data structure
• Each node has a mark bit (MB), initialized to 0
• free_list

• Two passes
• Mark accessible nodes (MB = 1)
• Sweep not accessible nodes (MB = 0) into free_list

Pros and cons

• Pros
• Reclaims all free blocks
• Only called into action when heap overflows

• Cons
• When it’s called upon, everything will stand still
• Need to do two passes (one for mark, the other for

sweep)

Algorithm 3:
Copy Collection

Algorithm 3: copy collection
Heap partitioned into two halves. Only one is active.
No free_list, only a free pointer.

Everything after
this point is free

Copy collection
Fenichel-Yochelson-Cheney (FYC) – 1970
Activation
• Triggered by t=new node() and
• free pointer outside the active half

How the algorithm works

t=new node()

The end

FYC copy collection

• Copy reachable blocks in from to to compactly
• Leave forwarding address behind
• Flip the roles of from and to

Comparison

• Benjamin Zorn (1990)
• M&S 5% slower and uses 40% less memory than copy

collection

• Memory utilization ratio (“residency”)
• r = # of used blocks / total # of heap blocks

• If r << 0.5 : Copy collection
• Otherwise: Mark-sweep

Garbage collection summary
• Modern algorithms: hybrid
• Java: built-in garbage collection
• runs as a low-priority thread.
• Programs may call System.gc

• Functional languages: built-in garbage collection
• C/C++: garbage collection left to the programmer

